

Training Material on Piezoelectric Materials

David Esteves¹, Amanda Melo¹, Nelson Durães¹, Ignacio Ezpeleta², Cintia Mateo-Mateo²

[1] CENTI Centre for Nanotechnology and Smart Materials, Vila Nova de Famalicão (Portugal)[2] AIMEN Technology Centre - Advanced Materials Department, O Porriño (Spain)

2

Electro active materials

- Piezo-electric polymer
 - Converts mechanical energy received into electrical energy
- Pyro-electric polymer
 - Converts heat into electrical energy:

- Ferro-electric polymer
 - Keeps oriented its polar crystals

- Ferrorelaxor polymer
 - Has a high dielectric constant above 20 and high strain with low applied voltage

Evolution of lead-free piezoelectric materials

Zheng, T., Wu, J., Xiao, D., & Zhu, J. (2018). Recent development in lead-free perovskite piezoelectric bulk materials. *Progress in materials science*, *98*, 552-624.

Piezoelectric materials

 $D = dT + \varepsilon E$

- D: Dielectric displacement
- d: piezoelectric coefficient
- T: mechanical stress
- ε: dielectric constant tensor under constant stress
- E: electric field

Curie Jaques, Curie Pierre, Development, via compression, of electric polarization in hemihedral crystals with inclined faces]. Bulletin de la Société Minérologique de France. 3 (**1880**) 4 : 90–93.

Piezoelectric behavior: ceramics, polymers, composites

> Good compromise between piezoelectric coeficients (d_{33} , g_{33}) and mechanical properties

Deutz, D.. Flexible piezoelectric composites: Bridging the gap between materials and applications. 2017.

Piezoelectric materials

Piezoelectric effect is exhibited by most of the materials that possess a non-centrosymmetric crystal structure

Lead free materials with piezoelectric properties

Orientation

Ferroelectric & Piezoelectric Materials

Ferroelectric

Exclusive features of ferroelectric (FE) materials

Permanent dipole moment Spontaneous polarization

Piezoelectric

Piezoelectric Materials: dielectric materials that can be polarized by means of an external electric field or by the application of a mechanical stress.

No strain - No polarization

Compressive Strain causes negative polarization.

Elongation Strain causes positive polarization.

All ferroelectrics are also piezoelectric, with the additional property that their natural electrical polarization is reversible

Polarization hysteresis: Ferroelectric Materials

-E_c: Coercive field Voltage threshold to start crystals polarization

-P_r: Remnant polarization Residual polarization after electrical field removed

-PE Maximum polarization achievable near to breakdown

voltage

-d₃₃: Piezo coefficient Capability of a material to generate an electrical signal under a mechanical stress

Typical Values

PVDF-TRFE copolymers

- Large crystalline domains
- **ε**_r : 11
- P_r : 8 µC/cm²
- **E_c** : 55 V/µm
- **d**₃₃ : 27 pC/N

Fabrication and characterization process

Development of lead-free piezoelectric composite films

Development of PVDF, PVDF/BaTiO₃ films/strips

- 1) Filament extrusion/compounding;
- 2) Fabrication of the tapes
- 3) Drawing process (under strain & temperature) for enhanced β-phase content of PVDF matrix
- & subsequent polarization (under electric field in oil bath)
 - 4) Testing

Electro active materials

- β-phase PVDF the most widely used polymer for Piezo application since 1969 showing a very high value of Curie Point.
- Curie transition point is the Thermal transition between the ferroeletric (ordered crystalline state) and paraelectric phase (disordered crystalline state)

• To make PVDF piezo we need to **convert crystalline** α**-phase into β-phase** by:

- Stretching it mechanically
- Annealing under a very high Pressure
- Poling by applying a very high electrical field

Piezoelectric polarization process methodologies

Inline-polarization

- One step process
- Can be combined with fibre fabrication processes

- It takes several minutes
- It is necessary to do the polarization after the material integration

Characterization of lead-free piezoelectric composite films

Analysis of d₃₃ piezoelectric coefficient & output voltage

- d₃₃ piezoelectric coefficient (pC/N) measured after polarization process
- Output voltage response measured with an oscilloscope (with a 10:1 10MΩ probe) upon bending cycles applied by hand

Output voltage – bending & tensile tests (universal tensile machine)

Peak-to-peak voltage response monitored with an oscilloscope (10MΩ internal resistance) when subjecting the piezoelectric films to tensile tests

Thank you

David Esteves¹, Amanda Melo¹, Nelson Durães¹, Ignacio Ezpeleta², Cintia Mateo-Mateo²

 [1] CENTI Centre for Nanotechnology and Smart Materials, Vila Nova de Famalicão (Portugal)
[2] AIMEN Technology Centre - Advanced Materials Department, O Porriño (Spain)

This project receives funding in the European Commission's Horizon 2020 Research Programme under Grant Agreement Number 862597