

Training Material on the scale-up of thermoplastic-based thermoelectric composites

Ignacio Ezpeleta¹, Cintia Mateo-Mateo¹, Beate Krause², Petra Pötschke²

[1] AIMEN Technology Centre - Advanced Materials Department, O Porriño (Spain)[2] Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Dresden (Germany)

This project receives funding in the European Commission's Horizon 2020 Research Programme under Grant Agreement Number 862597

Scale-up of materials for fabrication of energy harvesting components

- Production of p/n-type TE thermoplastic composites masterbatches for the construction of TEG (thermoelectric generator) and TPEG small scale prototypes (WP5) and the demo prototypes (WP7) within InComEss project.
- AIMEN's role: to optimize the recipes developed by IPF for continuous production of CNT-thermoplastic filaments at large-scale.

Scale-up of materials for fabrication of energy harvesting components

PC

Polymer matrices

- PEEK (Polyether ether ketone)
- PC (Polycarbonate) 🔀

Conductive filler

SWCNTs (singlewalled carbon nanotubes) •

PEG

Switching additive

PEG (Polyethylene glycol)

SWCNTs

- S = Seebeck coefficient U = Thermovoltage dT: Temperature difference

$$PF = S^2 \cdot \sigma$$

PF = Power factor σ = Volume conductivity

p-type composites (S>0) : polymer matrix (PEEK or PC) + conductive filler (SWCNTs) **n-type composites** (S<0) : polymer matrix/SWCNTs + Switching additive (PEG)

HAAKE PolyLab QC: Rheomex QC (Extruder – AIMEN's facilities)

APPLICATIONS:

- Extrusion of thermally critical materials such as PVC
- Compounding of fillers and reinforcing materials
- Blending of polymers
- Pilot plant production of master batches
- Continuous mixing of recycling materials
- Mixing of nano clays and carbons
- Discharge for further process state

Conical twin-screw extruder

- Continuous compounding & plasticizing
- Counter rotating conical twin-screw compounder, with intermeshing screws => well-defined residence time for faultless production of process-critical polymers.

HAAKE PolyLab QC – Rheomex QC (Extruder)

- Extruders: melting, conveying and compounding polymers under temperature, pressure and shear.
- Extruded polymer pressed through a die to form a solid material such as fibre.
- The extrusion process characterized by monitoring processing power (torque), temperature, pressure and throughput

Specifications	Value
Dimensions	(L x W x H) 290 mm x 750 mm x 210 mm
Weight	42.9 kg (only base extruder)
Screw diameter	conical
L/D	
Gear ratio	1:1
Rotating direction	counter
Max screw speed	250 min ⁻¹
Max temperature	450 °C
Max pressure	700 bar
Max torque	200Nm
Heating zones	3
Cooling	air
External heaters	2
Feeding zone	cooled

TECHNOLOGY

PC/SWCNTs (2.5 wt%) composites (*p-type*) X

- PC dried at 120 °C during 4h
- 0.5 h of mixing time PC/SWCNTs (2.5 wt%) in turbula
- PC/SWCNTs added to feeder of extruder machine
- Control of the four temperature ranges, speed and torque

MATRIX	FILLER	TS1	TS2	TS3	TD	SPEED	TORQUE
	(wt%)	(°C)	(°C)	(°C)	(°C)	(rpm)	(Nm)
PC	SWCNTs (2.5 wt%)	220	230	240	210	40	45

Scale-up of p-type PC/SWCNTs (2.5 wt%) composite

Selection for

TPEG

ipf	Composite	Vol. conductivity [S/m]	Seebeck coefficient [µV/K]	Power factor [µW/(m⋅K²)]
	PC/SWCNTs (2.5 wt%)	23.1	53.2 ± 0.3	6.5·10 ⁻²

6

PEEK/SWCNTs (2.5 wt%) composites (*p-type*)

Conditions

- PEEK dried at 120°C for 4h
- Premix: PEEK + SWCNTs during 1h

N٥	MATRIX	FILLER (wt%)	TS1 (°C)	TS2 (°C)	TS3 (°C)	TD (°C)	SPEED (rpm)	TORQUE (Nm)
3	PEEK	SWCNTs (2.5 wt%)	335	360	360	340	40-55	40

 ✓ Continuous extruded filament for p-type PEEK/SWCNTs composites (bobbins).

Selection for TEG

> N-type composites (PC and PEEK)

Conditions

- Dry of polymer matrix at 120°C during 4h
- Premixing of n-type composites:
 - 1) SWCNTs + Additive* (15 min) & 2) SWCNTs/Additive* + Polymer matrix (30 min)
 - *Additive: PEG *Polymer matrix: PC or PEEK

- Problems with the extrusion when adding PEG (low melting temperature = 65 °C) and high extrusion temperatures needed for PC or PEEK matrix.
- Formation of a paste in the first region of the extruder (stack) which difficult the extrusion of a continuous filament.
- Need to manipulate the feeding process by hand to be able to extrude the compounding.

N-type PC/SWCNTs (2 wt%)/PEG (15 wt%)

- ✓ Improvement of Seebeck coefficient and homogeneity of samples by following second extrusion
 - 1) Filament/compounding obtained after the first extrusion was pelletized
 - 2) Pellets fed into the hoper
 - 3) 2nd extrusion followed

N°	MATRIX	FILLER (wt%)	ADDITIVE (wt%)	TS1 (°C)	TS2 (°C)	ТS3 (°С)	TD (°C)
1	PC	SWCNTs (2 wt%)	PEG (15 wt%)	190	220	230	220

- Not possible to extrude a continuous filament of n-type PC composite.
- Small extruded segments of PC/SWCNT(2 wt%)/PEG(15 wt%) were achieved. Britle samples.

ipf	Composite	Vol. conductivity [S/m]	Seebeck coefficient [µV/K]	Power factor [µW/(m⋅K²)]
	PC/SWCNT(2 wt%)/PEG(15 wt%) 1st extrusion	52.0 ± 4.7	-26.0 ± 8.9	3.5·10 ⁻²
	PC/SWCNT(2 wt%)/PEG(15 wt%) 2nd extrusion	68.0 ± 20.1	-35.1 ± 3.1	8.4·10 ⁻²

PC/SWCNT (2 wt%) /PEG(15 wt%)

> N-type PEEK/SWCNTs(2.5 wt%)/PEG(15 wt%)

- 1) Filament/compounding obtained after the first extrusion was pelletized
- 2) Pellets fed into the hoper
- 3) 2nd extrusion followed

MATRIX	FILLER	ADDITIVE	TS1	TS2	TS3	TD	Speed
	(wt%)	(wt%)	(°C)	(°C)	(°C)	(°C)	(rpm)
PEEK	SWCNTs (2.5 wt%)	PEG (15 wt%)	340	370	360	335	20-40

- Not possible to extrude a continuous filament of n-type PC composite.
- Small extruded segments of PEEK/Tuball(2.5 wt%)/PEG(15 wt%) were achieved. Britle samples.

[ipf]	Composite	Vol. conductivity [S/m]	Seebeck coefficient [µV/K]	Power factor [µW/(m⋅K²)]
	PEEK/Tuball(2.5 wt%)/PEG(15 wt%) 1st extrusion	50.6 ± 10.4	-33.6 ± 0.3	5.7·10 ⁻²
	PEEK/Tuball(2.5 wt%)/PEG(15 wt%) 2nd extrusion	32.8 ± 0.6	-37.1 ± 3.1	4.5·10 ⁻²

PEEK/SWCNTs (2.5 wt%)/PEG (15 wt%) – 2nd extrusion step feeding

1st & 2nd extrusion of PEEK/SWCNTs (2.5 wt%)/PEG (15 wt%)

Conclusions

Scale-up of continuous filament/bobbins of p-type PC & PEEK composites was successfully achieved

Best thermoelectric characteristics for p-type PC composites correspond to a filler content of 2 wt% of SWCNTs

Best thermoelectric properties for p-type PEEK composites with a SWCNT content of up to 2.5 wt%

Problems with the extrusion of polymer matrices (PC/PEEK) with PEG (as switching additive)

A second extrusion of n-type PC and PEEK composites improved the homogeneity of extruded segments and thermoelectric features, but brittleness of samples observed.

The scale-up of n-type composites containing PEG needs to be improved.

Acknowledgments

This project receives funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement Number 862597

Thank you

Ignacio Ezpeleta | *Researcher* ignacio.ezpeleta@aimen.es

Cintia Mateo *Researcher, Project Coordinator* cintia.mateo@aimen.es

Beate Krause and Petra Pötschke | Researcher krause-beate@ipfdd.de, poe@ipfdd.de

This project receives funding in the European Commission's Horizon 2020 Research Programme under Grant Agreement Number 862597