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Abstract: Recently, there have been significant developments in the field of vibration energy har-
vesters to feed sensors for structural health monitoring in aeronautics and other high technology 
fields. Within the framework of the EU InComEss project, new eco-friendly piezoelectric materials 
are under development. A foreseen application is vibration energy harvesting from the wing slats 
of aircraft. Semi-analytical models of the vibrating slat make it possible to estimate the maximum 
voltage that can be generated by a piezoelectric patch bonded to a slat surface. A more detailed 
analysis must consider details of the three-dimensional geometry of both the harvester and the 
bonding layer. This can only be carried out with multiphysics finite element software. A finite ele-
ment model of a whole slat would require a large computational effort as millions of elements are 
typically needed to model very thin piezoelectric layers. To simplify this analysis, an integrated 
analytical–numerical method is proposed in this paper. A large-scale analytical model of the whole 
slat was used to calculate loads on the portion of the slat where a piezoelectric patch was attached. 
Then, a small-scale finite element model of the portion of the slat with the piezoelectric patch was 
used to calculate the open circuit voltage generated by the patch. The response of the harvester to 
random excitation, typical of aeronautic applications, was calculated. The effects of the details of the 
harvester design on the generated voltage were analyzed and discussed. 

Keywords: mechanical vibrations; strain energy harvesting; piezoelectric material; finite element 
model; structural health monitoring; aircraft; slat 
 

1. Introduction 
Vibration energy harvesting by means of piezoelectric (PE) materials is a promising 

technology for feeding remote sensor nodes and other microelectronic equipment, espe-
cially when weight, space and accessibility constraints are important. In aeronautics, sev-
eral applications of vibration energy harvesting have been proposed [1,2], but the most 
important application is feeding sensors for structural health monitoring (SHM) [3–5]. In 
the framework of the EU InComEss project [6], new lead-free piezoelectric materials are 
under development. A foreseen application is vibration energy harvesting from wing 
slats. Slats are movable aerodynamic surfaces on the leading edge of the wing that in-
crease the lift force on the wing when they are deployed. In [7], an analytical model based 
on the modal superposition approach [8] was used to simulate PE harvesters mounted on 
a deployed slat. A comparison was made between the performance of two possible design 
solutions: cantilever harvesters and PE patches directly bonded to the slat surface. Nu-
merical results showed that both solutions were able to generate relevant voltage and 
power. The cantilever harvester optimally tuned to the most excited mode of vibration of 
the slat showed the best performance, since it exploited the resonance phenomenon, but 
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this device required more mass, volume and stress inside the brittle piezoelectric material 
than the PE patch. Because the mass, volume and reliability of PE devices are very im-
portant issues in slat case-studies, the PE patch was selected for further development 
within the framework of the InComEss project. The deployed slat in [7] showed the largest 
vibrations; however, most of the energy could be harvested during the flight when the 
slat was retracted. The analytical model presented in [7] was extended in this study to 
investigate this operating condition. Moreover, to analyze the effect of details such as the 
three-dimensional geometry of the PE patch and thin adhesive layers used to bind the PE 
patch to the slat, an integrated approach combining a large-scale analytical model and a 
small-scale finite element model is proposed.  

The large-scale model, implemented in MATLAB, is fully analytical and is based on 
the modal expansion approach. It describes a whole slat excited by the broadband accel-
eration spectrum typical of wings, and it enables the calculation of the bending moment 
and shear force acting on the portion of the slat where the harvester is mounted. The con-
tact between the slat and the wing edge is simulated by means of a distributed stiffness, 
and the variation in the value of the contact stiffness makes it possible to simulate both 
retracted and deployed slats. 

The small-scale model, implemented in COMSOL Multiphysics, is numerical and is 
based on a multiphysics finite element (FE) method. It describes the sandwich structure 
of the harvester mounted on an equivalent portion of the slat, which is excited by the loads 
calculated by means of the large-scale model. This makes it possible to compute the volt-
age generated by the PE material considering the effects of the adhesive layer and of the 
other layers that compose the sandwich.  

The paper is organized as follows: Section 2 describes the problem and the structure 
of the combined analytical–numerical approach. Section 3 provides the input data: slat 
dimensions, PE patch dimensions, mechanical properties, and electrical properties. Sec-
tion 4 deals with the large-scale analytical model of the whole slat. Section 5 deals with 
the small-scale FE model. Section 6 shows the numerical results and, in particular, the 
effects of the adhesive thickness on the voltage generated by the harvester. Finally, con-
clusions are drawn. 

2. Integrated Analytical–Numerical Method 
The slat is the mobile leading-edge flap of a wing of an aircraft, which is operated to 

increase the angle of attack of the wing during low-speed maneuvers, such as take-off and 
landing. The slats are retracted during flight and are forced by the aerodynamic loads to 
remain in contact with the leading edge of the wing. The deployment and retraction of the 
slat is performed by servomechanisms. In the framework of this research, it was assumed 
that the slat is moved by two servomechanisms, so the whole deployed slat could be sche-
matized as a pinned beam with overhangs, as shown in Figure 1a. A distributed stiffness 
was added to allow for the contact force between the wing and the retracted slat. Figure 
1b shows the scheme of the retracted slat. The slat vibrates since it is excited by the wing 
through the slat supports. The vibration levels of the supports are equal to the vibration 
levels of the wing’s leading edge corresponding with the connecting points. The slat is not 
a rigid body; hence, it deforms due to inertia force. Figure 2 shows that the vibration levels 
at the supports are different, since vibrations along the wing of the aircraft increase from 
the root towards the tip of the wing [7]. In Figure 2, 𝑤 𝑥, 𝑡  represents the displacement 
of the deformed slat with respect to the undeformed configuration and 𝑎(𝑡) is the accel-
eration level of one of the two supports of the slat. 
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(a) (b) 

Figure 1. (a) Scheme of the deployed slat; (b) scheme of the retracted slat. 

 
Figure 2. Vibrating slat. The inertia force causes an elastic deformation with respect to the rigid body 
motion. 

From a physical point of view, the slat can be modelled as a pinned beam excited by 
a trapezoidal distribution of forces (as proposed in [7]) which represents the inertia force 
due to the vibration of the wing; see Figure 3.  

 
Figure 3. Physical model of the slat excited by the trapezoidal distribution of the inertia force. 

In aeronautics, acceleration levels are given in the frequency domain according to 
standard specifications. In this research, the standard specification RTCA-DO-160 CAT S 
curve E was adopted because it refers to wing components. Figure 4 shows the PSD of the 
acceleration of the external support of the slat. Therefore, a frequency domain analysis 
was needed to calculate the power spectral density (PSD) of the voltage generated by a PE 
patch mounted on the slat from the acceleration PSD, and then the voltage RMS value 
could be obtained with Parseval’s Theorem. 
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Figure 4. PSD of the acceleration of the external support of the slat. 

The piezoelectric patch is very thin and flexible and covers a very small part of the 
whole slat. Therefore, the vibrations of the slat caused by the motion of the supports are 
not influenced by the presence of the patch. Conversely, the deformation of the portion of 
the slat skin where the patch is attached determines the strain inside the PE patch and the 
generated voltage. The adhesive and protective layers that are inserted between the slat 
skin and the PE patch may also influence the generated voltage. For the above-mentioned 
reasons, a computational method based on the synergic use of a large-scale model and a 
small-scale model was developed. Figure 5 shows a flow chart that describes the steps and 
the interactions between the large-scale and small-scale models. 

 
Figure 5. Scheme of the analytical–numerical method. 

𝑃𝑆𝐷(𝑓
)
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The large-scale model refers to the whole slat, is based on the modal expansion ap-
proach, and is implemented in MATLAB. The aim of this model is to calculate the fre-
quency response functions (FRFs) of the points along the slat caused by a harmonic dis-
tributed inertia force having the shape depicted in Figure 3. In particular, the FRFs be-
tween bending moment, shear force, and slat acceleration are obtained. They enable the 
calculation of the forces and moments acting on every portion of the slat. 

The small-scale model includes the PE patch and the portion of the slat where the 
patch is attached. It is developed with the FE method and implemented in COMSOL. The 
actual cross-section of the slat, which is rather complex, is transformed into an equivalent 
cross-section that generates in the slat skin the same strain pattern as the actual cross-
section when the same loads are present. The small-scale FE is used to calculate, for a 
series of frequencies, the harmonic response of the system stimulated by the inertia dis-
tributed force and by the moments and forces deriving from the large-scale model at the 
assigned frequency. The fitting of the results of these analyses gives the numerical FRF 
(𝐹𝑅𝐹 (𝑓)) between slat acceleration and the open circuit voltage generated by the PE 
patch. The 𝐹𝑅𝐹 (𝑓) relates the PSD of the OCV to the PSD of the applied acceleration: 𝑃𝑆𝐷 (𝑓) = |𝐹𝑅𝐹 (𝑓)| ⋅ 𝑃𝑆𝐷 (𝑓). (1)

The open circuit voltage RMS value can be obtained from Parseval’s Theorem as 

𝑉 = 𝑃𝑆𝐷 (𝑓) d𝑓. (2)

The OCV is an important merit figures since it allows for the evaluation of the electric 
performance of the harvester, as discussed in [9].  

3. Input Data: Slat and PE Patch Properties 
The slat considered in this paper is built by the aerospace company Sonaca Group. It 

is made of a composite material and has the cross-section shown in Figure 6. The proper-
ties of the material and the cross-section, provided by Sonaca, are summarized in Table 1.  

 
Figure 6. Scheme of the PE patch attached to the slat skin. 

Table 1. Mechanical properties of the slat. 

Parameter Unit Value 
Young’s modulus (𝐸) GPa 45 

Density (𝜌) Kg m  1800 
Cross-section area (𝐴) m  2347.6 × 10  

Cross-section moment of inertia (𝐼) m  2615710.7 × 10  

SECTION A – A

PE PATCH

𝑥A

A𝒙𝒑𝒄
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A macro fiber composite (MFC) piezoelectric patch manufactured by Smart Material 
GmbH (patch M8514—P2 in the datasheet of [10]) and directly bonded to the slat skin was 
considered here. Figure 6 shows the slat, the PE patch, and the global reference frame. The 
y-axis is aligned to the neutral axis of the slat cross-section. The center of the patch is lo-
cated at 𝑥 = 1.45 m and 𝑧 = 0.025 m. 

Figure 7 represents the scheme of the M8514—P2 patch and shows the local reference 
frame and the main dimensions of the patch. The patch is designed to exploit the strain 
along its longitudinal direction (axis 1), and it is poled along the direction perpendicular 
to its middle plane (axis 3). 

 
Figure 7. Scheme of M8514—P2 patch (main dimensions and the local reference frame are depicted). 

Table 2 shows the values of the geometric parameters depicted in Figure 7. 

Table 2. Geometrical parameters of the PE patch. 

Parameter Unit Value 
Patch overall length (𝐿 , ) m 0.100 
Patch active length (𝐿 , ) m 0.085 
Patch overall width (𝑤 , ) m 0.018 
Patch active width (𝑤 , ) m 0.014 

Patch thickness (𝐻 ) m 0.0003 
Coordinate 𝑥  m 1.4075 
Coordinate 𝑥  m 1.450 
Coordinate 𝑥  m 1.4925 

To exploit the largest strain values, the PE patch is oriented to align its 1-axis with 
the x-axis of the global reference frame of the slat. Indeed, the slat vibrates in the z-direc-
tion due to the transverse load distribution; hence, the axial strain caused by the bending 
moment distribution is the main contribution.  

In Table 3, the electromechanical properties of the considered PE patch are presented. 

Table 3. Electromechanical properties of the PE patch. 

Parameter Unit Value 
Compliance constant along 1-axis at con-

stant electric field (𝑠 ) 
GPa  3.296 × 10  

Piezoelectric strain constant (𝑑 ) C N  −210 × 10  
Capacitance (𝐶 ) F 84.04 × 10  

4. Large-Scale Analytical Model of the Slat 
The variable inertia force that excites the slat can be expressed as 

+

-
1

2

𝒙

𝐿 ,𝐿 ,

𝑤 , 𝑤 ,

𝐻

𝒙𝒑𝟐𝒙𝒑𝒄𝒙𝒑𝟏
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𝑞(𝑥, 𝑡) = 𝜌𝐴𝑔(𝑥)𝑎(𝑡) (3)

where 𝑔(𝑥) is a shape function that correlates the acceleration of any point of the slat with 
the acceleration 𝑎(𝑡) of one of its supports (the external in the present study); see Figure 
2. As demonstrated in [7], the shape function is 𝑔(𝑥) = 𝛼𝐿 (𝐿 + 𝐿 − 𝑥) + 1𝐿 (𝑥 − 𝐿 ) , (4)

where 𝛼 is a parameter related to the slope of the trapezoidal distribution and 𝐿  and 𝐿  
are the length of the spans of the slat; see Figure 1a. Here, the parameter 𝛼 was set to 0.05, while 𝐿 = 0.81 m and 𝐿 = 1.38 m [7]. 

The vibrating slat is considered to be a Euler–Bernoulli beam with constant proper-
ties: modulus of elasticity 𝐸, cross-section moment of inertia 𝐼, mass density 𝜌, cross-
section area 𝐴, and coefficient of strain-rate damping 𝑐  (a proportional damping is as-
sumed). The equation of the forced vibrations of each of the three spans in Figure 1a (𝑘 =1,2,3) is 𝐸𝐼 𝜕 𝑤 , (𝑥 , 𝑡)𝜕𝑥  + 𝑐 𝐼 𝜕 𝑤 , (𝑥 , 𝑡)𝜕𝑥 𝜕𝑡 + 𝜌𝐴 𝜕 𝑤 , (𝑥 , 𝑡)𝜕𝑡 = −𝜌𝐴𝑔(𝑥 )𝑎(𝑡) − 𝑘 𝑤 , (𝑥 , 𝑡), (5)

where 𝑘  is the distributed stiffness. The backward electromechanical coupling term [11] 
is not considered in Equation (5) since the length of the PE patch is much smaller than the 
overall slat length and because the PE patch is much thinner than the slat. 
The first steps of the modal expansion approach are the calculations of the natural fre-
quencies and modes of vibration of the undamped system. 

The free undamped vibrations for the retracted slat are described by the following 
homogeneous equation of motion: 𝐸𝐼 𝜕 𝑤 , (𝑥 , 𝑡)𝜕𝑥 + 𝜌𝐴 𝜕 𝑤 , (𝑥 , 𝑡)𝜕𝑡 + 𝑘 𝑤 , (𝑥 , 𝑡) = 0. (6)

The relative displacement can be expressed as the product of a spatial function 𝜓 , 
which represents the deformed shape of the slat, and a time function 𝑓 [8]: 𝑤 , (𝑥 , 𝑡) = 𝜓 (𝑥 )𝑓(𝑡). (7)

By inserting Equation (7) in Equation (6) and separating the variables, it becomes 

( )
( ) = − ( )( ). (8)

The right-hand side of Equation (8) has the dimension of a squared angular fre-
quency: 𝐸𝐼𝜌𝐴 𝜕 𝜓 (𝑥 )𝜕𝑥 + 𝑘𝜌𝐴𝜓 (𝑥 )𝜓 (𝑥 ) = 𝜔 . (9)

After some algebraic manipulations, the partial differential equation for the spatial 
component 𝜓  of 𝑤 ,  is obtained: 𝜕 𝜓 (𝑥 )𝜕𝑥 − 𝛾 𝜓 (𝑥 ) = 0, (10)

where 𝛾 = 𝜌𝐴𝜔𝐸𝐼 − 𝑘𝐸𝐼 , (11)
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includes the unknown natural angular frequencies. The solution of differential Equation 
(10) for each of three spans of the slat (𝑘 = 1,2,3) in Figure 1a takes the form: 𝜓 (𝑥 ) = 𝐴 𝑠𝑖𝑛ℎ(𝛾𝑥 ) + 𝐵 𝑐𝑜𝑠ℎ(𝛾𝑥 ) + 𝐶 𝑠𝑖𝑛(𝛾𝑥 ) + 𝐷 𝑐𝑜𝑠(𝛾𝑥 ), (12)

where 𝐴 ,𝐵 ,𝐶  and 𝐷  are unknown coefficients. By imposing the boundary conditions 
on the three spans of the slat and solving the corresponding eigenvalue problem, as dis-
cussed in [7], an infinite discrete set of values 𝛾  is found and the corresponding values 
(𝐴 , ,𝐵 , ,𝐶 , , and 𝐷 , ) of the unknown coefficients are calculated. From Equation (12), the 
ith mode of vibration of the slat becomes 𝜓 , (𝑥 ) = 𝐴 , 𝑠𝑖𝑛ℎ(𝛾 𝑥 ) + 𝐵 , 𝑐𝑜𝑠ℎ(𝛾 𝑥 ) + 𝐶 , 𝑠𝑖𝑛(𝛾 𝑥 ) + 𝐷 , 𝑐𝑜𝑠(𝛾 𝑥 ) ,     𝑘 = 1,2,3 (13)

The corresponding natural frequency 𝑓 ,  of the ith mode of vibration of the slat can be 
calculated with Equation (11) as follows: 

𝑓 , = 12𝜋 𝛾 𝐸𝐼𝜌𝐴 + 𝑘𝜌𝐴. (14)

Equation (13) shows that the slat has the same modes of vibrations when deployed 
or retracted. On the other hand, Equation (14) shows that the modes are characterized by 
different natural frequencies due to the dependence on 𝑘 . Therefore, the interaction be-
tween the retracted slat and the wing determines an increase in the natural frequency of 
each mode. Figure 8 represents the natural frequencies of the first five modes of vibration 
of the retracted slat as a function of the distributed stiffness 𝑘  considering the mechani-
cal properties of the composite slat shown in Table 1.  

 
Figure 8. Natural frequencies of the first five modes of vibration of the retracted slat as a function 
of the distributed stiffness 𝑘 . 

Figure 8 shows that when the distributed stiffness increases, all the natural frequen-
cies of the modes converge to the same value, which means that the dynamics of the slat 
are close to those of a rigid body mounted on the distributed stiffness 𝑘 . On the contrary, 
when the distributed stiffness is much smaller than the flexural stiffness of the slat, it has 
a negligible effect on the natural frequencies. 
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The relative displacement 𝑤 (𝑥, 𝑡) of any point of the slat can be expressed by using 
the modal expansion approach as a linear combination of the modes of vibration of the 
slat [8,11,12]: 

𝑤 (𝑥, 𝑡) = 𝜙 (𝑥)𝜂 (𝑡), (15)

where 𝜙 (𝑥) is the ith mass-normalized mode of vibration (that derives from the non-
normalized mode [7]) and 𝜂 (𝑡) is the ith modal coordinate. Hence, the equation of mo-
tion of the ith modal coordinate is obtained by introducing Equation (15) in Equation (5) 
and applying the orthogonality conditions [9,11]: 𝜂 (𝑡) + 4𝜋 𝜁  𝑓 ,   𝜂 (𝑡) + 4𝜋 𝑓 ,  𝜂 (𝑡)  = − 𝜌𝐴 𝜙 (𝑥) 𝑔(𝑥)𝑎(𝑡)𝑑𝑥, (16)

where 𝑓 ,  and 𝜁  are the natural frequency and the damping ratio of the ith mode of vi-
bration, respectively.  

In the frequency domain, the modal coordinates 𝜂 (𝑡) and the acceleration 𝑎(𝑡) are 
expressed as 𝜂 (𝑡) = 𝜂 ,  𝑒 ,𝑎(𝑡) = 𝑎  𝑒 . (17)

The frequency response function (FRF) between the modal coordinate amplitude 𝜂 ,  
and the amplitude of the acceleration 𝑎  is 

𝐹𝑅𝐹 (𝑓) = 𝜂 ,𝑎 = − 𝜌𝐴𝜙 (𝑥)𝑔(𝑥)𝑑𝑥4𝜋 𝑓 , + 8𝜋 𝑖𝜁 𝑓 ,  𝑓 − 4𝜋 𝑓 . (18)

Therefore, only considering 𝑁 modes of vibration of the slat, if Equation (18) is in-
serted into Equation (15), the FRF between the amplitude of the relative displacement of 
any point of the slat and the acceleration 𝑎  can be calculated as follows: 

𝐹𝑅𝐹 (𝑥, 𝑓) = 𝑤 ,𝑎 = 𝜙 (𝑥)𝐹𝑅𝐹 (𝑓). (19)

The bending moment and the shear force along the slat are related to the relative 
displacement 𝑤 (𝑥, 𝑡) by the following equations: 𝑀(𝑥, 𝑡) = 𝐸𝐼 𝜕 𝑤 (𝑥, 𝑡)𝜕𝑥 , (20)

𝑇(𝑥, 𝑡) = 𝐸𝐼 𝜕 𝑤 (𝑥, 𝑡)𝜕𝑥 , (21)

With harmonic excitation, the bending moment and shear force can be described in 
the frequency domain using the displacement FRF: 

𝑀 (𝑥, 𝑓) = 𝐸𝐼 𝜕𝜕𝑥 𝜙 (𝑥)𝐹𝑅𝐹 (𝑓) 𝑎 , (22)

𝑇 (𝑥, 𝑓) = 𝐸𝐼 𝜕𝜕𝑥 𝜙 (𝑥)𝐹𝑅𝐹 (𝑓) 𝑎 , (23)

Finally, the bending moment and shear force FRFs are defined as 

𝐹𝑅𝐹 (𝑥, 𝑓) = 𝐸𝐼 𝜕 𝜙 (𝑥)𝜕𝑥 𝐹𝑅𝐹 (𝑓), (24)
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𝐹𝑅𝐹 (𝑥, 𝑓) = 𝐸𝐼 𝜕 𝜙 (𝑥)𝜕𝑥 𝐹𝑅𝐹 (𝑓). (25)

Figure 9 shows the magnitude of the FRFs related to the bending moment and shear 
force for different values of the distributed stiffness calculated at the center of the PE patch 
(𝑥 ). The magnitude of the bending moment FRF in Figure 9 is characterized by peaks at 
the natural frequencies of the odd modes, whereas the magnitude of the shear force FRF 
is characterized by peaks at the natural frequencies of the even modes. Indeed, the bend-
ing moment distribution corresponds to symmetric loads acting on a portion of the slat, 
so it only excites the odd modes, whereas the shear force corresponds to an anti-symmetric 
load and only excites the even modes. 

  

(a) (b) 

Figure 9. (a) Magnitude of the bending moment FRF; (b) magnitude of the shear force FRF. 

5. Small-Scale Model of a Portion of the Slat with the PE Patch 
5.1. Equivalent Model of a Portion of the Slat 

Typically, a PE patch has a longitudinal dimension that is much shorter than the 
length of the host structure. Moreover, the cross-section dimensions of the harvester are 
significantly smaller than those of the cross-section of the structure. These large differ-
ences in the geometrical dimensions represent an important issue related to the develop-
ment of the FE model. Indeed, many very thin elements are required to discretize the sys-
tem in the region close to the PE patch, resulting in a large computational effort. To over-
come this drawback, a portion of the vibrating structure containing the PE patch is first 
considered. Then, the cross-section of this portion is reduced to a simpler and smaller 
equivalent cross-section to achieve a better aspect ratio between the dimensions of the 
equivalent cross-section and the ones of the patch.  

Figure 10a shows that in each portion of the slat, the external loads are the distributed 
load 𝑞 due to inertia force (Equation (3)), the bending moment 𝑀, and shear force 𝑇 ex-
erted by the rest of the slat (subscripts R and L refers to the left and right sides, respec-
tively). The bending moment 𝑀  and shear force 𝑇  can be calculated from 𝑀 , 𝑇  and 𝑞 by means of the equilibrium equations. Since the bending moment 𝑀  and shear force 𝑇  can also be exerted by the clamp of a cantilever beam, Figure 10b shows that the slat 
portion can be converted to an equivalent cantilever beam with the same length and 
forced by the same external loads acting on that portion of the slat. It is worth noticing 
that the slat portion and the cantilever beam have the same bending moment distribution. 
The same bending moment distribution causes the same curvature and the same strain 
and stress distribution, which guarantees the same performance of the PE patch. 
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Figure 10. (a) Equilibrium of a portion of the slat.; (b) equilibrium of the equivalent cantilever beam. 

The OCV generated by the PE patch depends on the strain distribution within the 
patch. Since the PE patch is very thin compared with the slat thickness, it is assumed that 
the strain distribution within the patch coincides with the strain distribution of the slat 
just below the patch. In this scenario, the OCV generated by the PE patch bonded to the 
slat can be reproduced by simply bonding the patch to an underlayer, which reproduces 
the same strain distribution of the slat just below the patch. By assuming a 1D approxima-
tion, the strain distribution 𝑆(𝑥) along the longitudinal direction of the slat subject to a 
bending moment distribution 𝑀 (𝑥) can be approximated as 𝑆(𝑥, 𝑡) = 𝑀 (𝑥, 𝑡)𝑊 , (26)

where 𝑊 = 𝐸𝐼/𝑧  is the module of resistance of the slat cross-section, 𝑧  is the distance 
from the neutral axis of the slat, 𝐸 is the Young’s modulus, and 𝐼 is the moment of inertia 
of the cross-section of the slat. Equation (26) shows that two structures loaded by the same 
bending moment distribution with different cross-section and Young’s modulus values 
may provide the same strain distribution if they have the same module of resistance. 
Therefore, it is possible to assume that the equivalent beam has a rectangular cross-section 
and that the PE patch is bonded to the upper surface of the beam. Figure 11a shows the 
actual cross-section of the slat, and Figure 11b schematizes the cross-section of the equiv-
alent beam. 

  
(a) (b) 

Figure 11. (a) Actual slat structure cross-section; (b) cross-section of the equivalent beam. 
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The module of resistance 𝑊 ,  of the equivalent beam with rectangular cross-sec-
tion is 𝑊 , = 𝐸 𝐼𝑧 , = 𝐸 𝐵 𝐻6 , (27)

where 𝐵  and 𝐻  are the width and thickness of the equivalent beam, respectively, and 𝑧 , = 𝐻 /2. Width and thickness 𝐵  and 𝐻  are defined to obtain a suitable aspect 
ratio between the cross-sections of the beam and the PE patch. Consequently, the module 
of resistance 𝑊 ,  only equals the module of resistance 𝑊  of the cross-section of the 
slat if the Young’s modulus of the equivalent beam takes this value: 𝐸 = 6𝐸𝐼𝑧 𝐵 𝐻 . (28)

5.2. Finite Element Model 
The numerical FE model of the patch can be implemented in COMSOL Multiphys-

ics®. 
As previously mentioned, the equivalent beam has a rectangular cross-section, and the PE 
patch is bonded to the top side of the beam. Table 2 shows that the PE patch has an overall 
length and width of 0.1 m and 0.018 m, respectively. However, the active portion of the 
patch, containing the piezoelectric material, has smaller dimensions. Indeed, the active 
portion is enclosed by a polymeric material (Kapton). The length of the equivalent beam 
was chosen to be slightly longer than the active portion of the PE patch. The width of the 
beam is equal to the width of the patch. The determination of the thickness of the equiva-
lent beam must consider that the FE model will be used to perform a frequency domain 
analysis. The equivalent cantilever beam has its own natural frequency (𝑓 , ) that can be 
excited by the applied loads but does not correspond to an actual natural frequency of the 
slat: 

𝑓 , = 1.8752𝜋𝐿 𝐸 𝐵 𝐻12𝜌 𝐴 . (29)

Hence, the thickness 𝐻  was defined to have a natural frequency of the equivalent 
beam far from the range of frequency of interest (above 2000 Hz). Table 4 shows the geo-
metrical features of the FE model. 

Table 4. Geometrical features of the FE model. 

Parameter Unit Value 
Patch length (𝐿 ) m 0.085 
Patch width (𝑤 ) m 0.014 

Patch thickness (𝐻 ) m 0.0003 
Beam length (𝐿 ) m 0.090 
Beam width (𝑤 ) m 0.014 

Beam thickness (𝐻 ) m 0.002 

The cross-section area and moment of inertia of the equivalent beam can be easily 
calculated using the formulas of the rectangular cross-section. Finally, the equivalent 
Young’s modulus is obtained from Equation (28). The density of the beam is determined 
by assuming the mass per unit length 𝜇  of the beam equal to that of the slat 𝜇, yielding 𝜌 = 𝜇𝐴 . (30)

Table 5 presents the mechanical parameters of the equivalent beam. 
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Table 5. Mechanical properties of the equivalent cantilever beam. 

Parameter Unit Value 
Young’s modulus (𝐸 ) GPa 5.00 × 10  

Density (𝜌 ) Kg m  1.51 × 10  
Cross-section area (𝐴 ) m  2.80 × 10  

Cross-section moment of inertia (𝐼 ) m  9.33 × 10  
Natural frequency (𝑓 , ) Hz 2297 

Since the geometry of the equivalent beam in Figure 11b is symmetric with respect to 
the x–z plane, the model only considers one half of the system to reduce the computational 
effort; see Figure 12a. 

  
(a) (b) 

Figure 12. (a) Boundary conditions for mechanics.; (b) boundary conditions for electrostatics. 

The constitutive equations of a PE material allow for electromechanical coupling in 
the multiphysics problem. The strain-charge and stress-forms are available in COMSOL 
Multiphysics®. In this analysis, the strain-charge form was adopted, since it leads to a 
drastic reduction in the number of material constants when some assumptions are made. 
The constitutive equations in the strain-charge form are as follows [12]: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷 ⎭⎪⎪⎪

⎬⎪
⎪⎪⎫ =

⎣⎢⎢
⎢⎢⎢
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⎢⎡𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑑 𝑑 𝑑𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑑 𝑑 𝑑𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑑 𝑑 𝑑𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑑 𝑑 𝑑𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑑 𝑑 𝑑𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑑 𝑑 𝑑𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝜀 𝜀 𝜀𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝜀 𝜀 𝜀𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝜀 𝜀 𝜀 ⎦⎥⎥
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⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸 ⎭⎪⎪⎪

⎬⎪
⎪⎪⎫

 (31)

where 𝑆  are the mechanical strain components (6 × 1), 𝐷  represents the electric dis-
placement components (3 × 1), 𝑇  represents the mechanical stress components (6 × 1), 𝐸  represents the electric field components (3 × 1), 𝑠  represents the compliance con-
stants in a constant electric field (6 × 6), 𝑑  represents the piezoelectric strain constants 
(3 × 6), and 𝜀  represents the permittivity constants at constant stress (3 × 3). Therefore, 
the full characterization of a piezoelectric material requires 63 material constants. The fol-
lowing assumptions that are usually made when thin piezoelectric layers are considered 
[13] can be introduced: 
1. Electrodes of the PE material acting along the 3-axis of the local reference frame of 

the material, i.e., 𝐸 = 𝐸 = 0,𝐸 0. 
2. Thin beam, i.e., 𝑇 = 𝑇 = 𝑇 = 𝑇 = 𝑇 = 0,𝑇 0. 
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3. Orthotropic material. 
In this case, the 9 × 9 matrix of material constants in Equation (31) can be reduced 

to a 2 × 2 symmetric matrix with only three material constants. The reduced constitutive 
equation becomes [6] 𝑆𝐷 = 𝑠𝑑 𝑑𝜀 𝑇𝐸  (32)

The compliance constant 𝑠  and the piezoelectric strain constant 𝑑  are provided 
in the datasheet of the considered PE patch [10]. The permittivity constant 𝜀  is not pro-
vided in the datasheet; however, it can be calculated as [4,6] 𝜀 = 𝜀 𝐶 𝐻𝑤 𝐿 + 𝑑𝑠  (33)

where 𝜀  is the vacuum permittivity. Tables 3 and 6 represent the electromechanical pa-
rameters of the PE patch implemented in COMSOL. 

Table 6. Electromechanical properties of the PE patch. 

Parameter Unit Value 𝜀  F m  2544𝜀  
Density (𝜌 ) Kg m  5440 

Two mechanical boundary conditions are applied to the model (Figure 12a). Firstly, 
a fixed constraint to the clamped surface of the cantilever beam is imposed. Secondly, a 
symmetry condition is imposed on the surfaces of the beam and the patch belonging to 
the plane of symmetry. Finally, both the beam and the piezo are loaded by a distributed 
load per unit length corresponding to the inertia force obtained from Equations (3) and 
(4).  

Two electrostatic boundary conditions are applied (Figure 12b). A floating potential 
is imposed on the top side of the PE patch, whereas its bottom side is set to ground poten-
tial. In this way, the value of the floating potential, which is computed from the solution 
of the multiphysics problem, corresponds to the OCV at the patch terminals. 

The geometry is discretized by using a mapped mesh (second-order FE elements), 
which is obtained by extruding a quadrilateral mesh (element size range 0.5 − 1 mm). To 
obtain accurate results, four elements are used along the thickness of the beam and six 
elements are used along the thickness of the patch. Figure 13 shows the mapped mesh 
used to discretize the geometry. 

 
Figure 13. Mapped mesh used to discretize the geometry.  
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6. Numerical Results 
6.1. Validation of the Integrated Analytical–Numerical Method 

If the PE layer is directly bonded to the slat surface, the OCV FRFs can be calculated 
both by means of the integrated model proposed in this paper and by means of the ana-
lytical model presented in [7] modified to consider contact stiffness 𝑘 . Figure 14 com-
pares the magnitude of the calculated OCV FRF considering 𝑘 = 0 𝑁𝑚  (deployed slat, 
Figure 14a) and 𝑘 = 10  𝑁𝑚  (retracted slat, Figure 14b).  

  
(a) (b) 

Figure 14. Comparison between the magnitudes of the OCV FRFs obtained using the analytical and 
integrated models. (a) 𝑘 = 0 𝑁𝑚 ; (b) 𝑘 = 10  𝑁𝑚 . 

Figure 14a,b shows that the integrated and analytical models, respectively, were in 
good agreement, even if different values of 𝑘  were adopted. 

6.2. Effect of Contact Stiffness on Generated Voltage 
The deployment and retraction of the slat modify the contact stiffness between the 

slat and the wing and influence the generated voltage. To analyze this effect, a parametric 
analysis was carried out by means of the integrated model. The scheme in Figure 5 shows 
that the numerical OCV FRF, obtained using COMSOL, could be imported in MATLAB 
to calculate the 𝑉  using Equations (1) and (2). Figure 15 represents the 𝑉  generated 
by the PE patch as a function of the distributed stiffness 𝑘 . It can be noted that the effect 
of 𝑘  on voltage output was only valuable above 10  Nm−2. For large values of 𝑘  the 
generated voltage drastically decreased because the slat began to behave as a rigid body 
connected to the wing edge. These results agreed with the trend of the natural frequencies 
against contact stiffness, which is presented in Figure 8. 
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Figure 15. 𝑉  vs. 𝑘 . The values of 𝑉  were derived from the numerical OCV FRFs obtained 
in COMSOL. 

6.3. Effect of Interposed Layers on Performance 
The integrated model was found to be suitable for analyzing the effect of the inter-

posed layers between the PE patch and the slat skin. Typical layers are the ones of the 
adhesive and Kapton, which are used to seal the PE material. The PE layer can be embed-
ded into a more complex electric generator, such as the one presented in [6] and [14], 
which was a hybrid Thermo–Piezoelectric Generator (TPEG). Hence, not only adhesive 
and Kapton layers but also thermoelectric and conductive layers may be interposed be-
tween the PE layer and the surface of the structure. Finally, the FE model also allows for 
the evaluation of the performance of several PE generators piled one onto the other to 
increase the total generated electric power.  

In the framework of this research, a layer of an isotropic polymeric material was 
added to the FE model. Figure 16 shows the cross-section of the model. 

 
Figure 16. Cross-section of the model with the interposed layer. 

The layer can be made of two different materials: Material 1 has the mechanical prop-
erties typical of polymers such as epoxy and Kapton; Material 2 has a Young’s modulus 
about one order of magnitude smaller than that of Material 1. The geometrical and 
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mechanical properties of the added layers are shown in Table 7. It is worth noticing that 
the Young’s modulus of the added layers was about one/two orders of magnitude smaller 
than the ones of the PE and slat materials. 

Table 7. Electromechanical properties of the added layers. 

Parameter Unit Value 
  Material 1 Material 2 

Length (𝐿 ) m 0.085 0.085 
Width (𝑤 ) m 0.014 0.014 

Young’s modulus (𝐸 ) GPa 2 0.5 
Poisson’s ratio (𝜈 )  0.3 0.3 

Density (𝜌 ) Kg m  1100 1100 

A series of parametric simulations was carried out to evaluate the generated voltage 
as a function of the thickness 𝐻  of the polymeric layer. It was assumed that 𝑘 = 0 𝑁𝑚  
(deployed slat). The model was discretized using the same mesh as the previous simula-
tions. The polymeric layer was discretized using five elements along its thickness. Figure 
17a shows the RMS values of the generated OC voltage as a function of the thickness of 
the interposed layer and the Young’s modulus of the polymeric layer. Figure 17b shows 
the distance of the center of the PE patch from the neutral axis of the equivalent beam.  

  
(a) (b) 

Figure 17. (a) RMS value of OCV vs. thickness 𝐻  of the interposed layer and the Young’s modulus 𝐸  of the interposed layer; (b) distance 𝑧 ,  of the center of the PE patch from the neutral axis. 

Figure 17 highlights that moving away the center of the PE patch from the neutral 
axis increased its performance, since, as shown in Equation (26), the strain within the 
patch increased. However, this advantageous effect gradually decreased, since the strain 
was not correctly transmitted from the slat to the patch when the thickness of the inter-
posed polymeric layer was very large. Indeed, for large thicknesses, the distance from the 
neutral axis linearly increased, whereas the performance showed a decrease in the growth 
rate.  

The comparison between the two curves of Figure 17 shows that if the polymeric 
layer had a small Young’s modulus, the positive effect due to the increased distance from 
the neutral axis vanished for smaller values of thickness. 

It is worth noticing that if the PE patch was located inside the slat structure, the in-
crease in the polymeric layer thickness led to a small decrease in the distance from the 
neutral axis, with a reduction in the generated voltage. 
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7. Conclusions 
An integrated analytical–numerical model for the prediction of the voltage generated 

by a small PE patch mounted on a long slender body that vibrates due to random excita-
tion has been presented and applied to a wing slat. 

The introduction of a variable contact stiffness between the slat and the wing edge 
makes it possible to simulate the behavior of the PE patch, both when the slat is retracted 
and when the slat is deployed. Numerical results showed that the PE patch generated 
much less voltage when the slat was retracted, because the large contact stiffness reduced 
the deformability of the slat. 

The transmission of the strain from the slat surface to the active PE layer through the 
intermediate layers (adhesive and protective) is an important issue. To this end, the inte-
grated model was used to simulate the effect of a passive layer of increasing thickness 
located between the slat and the active PE layer. The results showed that a small increase 
in the thickness of the intermediate layer had a beneficial effect. This effect was the result 
of the increase in the distance between the PE layer and the neutral axis of the cross-section 
caused by the thicker layer. It vanished when the intermediate layer became very thick 
(some mm with the considered materials). 

A further application of the integrated model will be the simulation of more complex 
sandwich structures such as generators that include both PE harvesters and thermo–elec-
tric harvesters based on the Seebeck effect. 
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