

THIS PROJECT RECEIVES FUNDING IN THE EUROPEAN COMMISSION'S HORIZON 2020 RESEARCH PROGRAMME UNDER GRANT AGREEMENT NUMBER 869991.

Accelerate the adoption of IoT technologies

 40%
 Reduction of GHG emissions

50%
 Reduction of hazardous waste

INnovative polymer-based COmposite systeMs for high-efficient Energy Scavenging and Storage

www.incomess-project.com

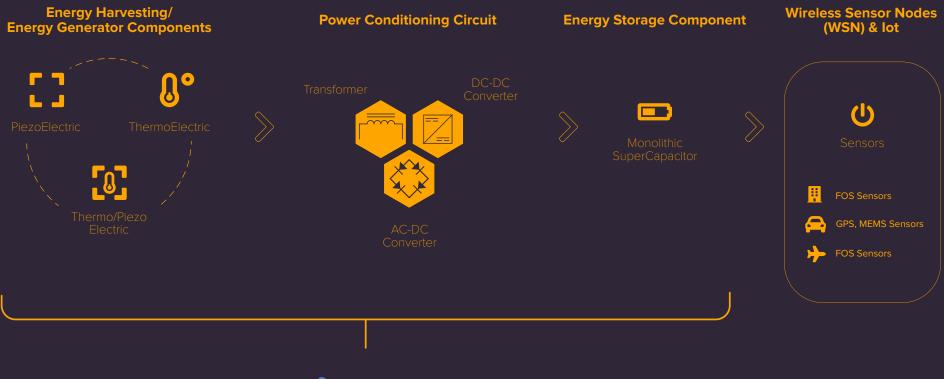
Advanced **polymerbased composite materials**

will be combined into a **novel single/multi- source concept**

to **harvest electrical energy** from mechanical energy and/or waste heat ambient sources

to be used in **3 different use cases**: vehicle monitoring in automotive, Structural Health Monitoring in aerospace and building.

Implementation of Innovative Materials, Systems & Structures

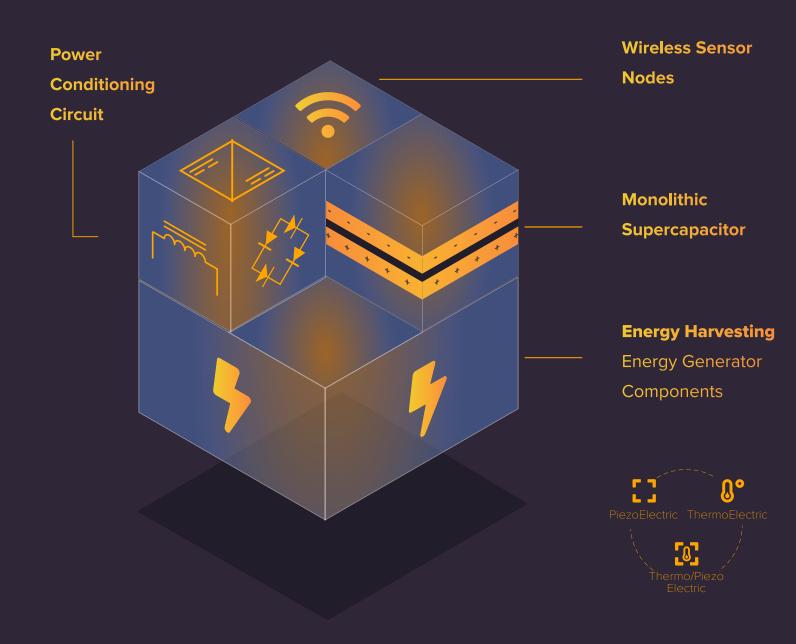


To develop **Energy** Harvesting Systems

Able to power **FOS**, **GPS and MEMS sensors** in different Use Cases

Three Energy Harvesting Systems (EHSs)

3 cost-ef fective and green EHSs configurations will be realized through the combination of high performance piezoelectric (PE), thermoelectric (TE) and Thermo-Piezoelectric (TPE) generators and monolithic supercapacitors (SCs) to power **selected wireless sensors nodes** to be implemented in different IoT scenarios for Structural Health Monitoring (SHM) in buildings and aircrafts


and accurate location and monitoring of vehicles through GPS and MEMS sensing.

Development of Novel Energy Harvesting Systems (EHSs)

A novel **single/multisource concept to harvest electrical energy** from mechanical energy and/or waste heat ambient sources.

- PiezoElectric EHS (PE-EHS)
- ThermoElectric EHS (TE-EHS)
- ThermoPiezo EHS
 (TPE-EHS)

by their integration through an **Advanced Power Conditioning Circuit**

Use Cases

The project will demonstrate its applicability in key sectors and applications, SHM and vehicle monitoring in automotive, aerospace and building, presenting the highest market potential.

Smart Buildings

Piezoelectric EHS FOS

Thermoelectric EHS GPS, MEMS

Aerospace

Thermo/Piezo-electric EHS FOS

50% reduction of hazardous waste

Environment

The selected materials combinations and processing routes will allow reducing around 60% costs of overall materials and manufacturing process, including more than 40% reduction of the Green House Gas (GHGs) generated along their production value chain, and an overall reduction of hazardous waste by more than 50% compared to state-of-the-art materials.

Non-expensive ceramics and fillers together with highly recyclable and cheap polymer matrices will be used in InComEss, including avoidance of rareearth elements and hazardous lead or Tebased elements, and ensuring a sustainable and efficient use of resources in line with the circular economy perspective. ನೆ 40%

Reduction of Green House Gas

Reduction of hazardous waste

な 60%

Highly recyclable polymers

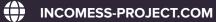
Pb Pb

Lead Free

Rare Earth

Avoidance of rare-earth elements

Sustainability


Sustainable and efficient use of resources

Want to learn more and be updated? Follow us

INCOMESS PROJECT

